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a b s t r a c t

Background and aims: Methionine (Met) is an essential amino acid involved in methylation reactions and
lipid metabolism. A Met-deficient diet may cause hepatic lipid accumulation, which is considered an
independent risk factor for atherosclerosis. However, the prospective relationship between circulating
Met and incident acute myocardial infarction (AMI) is unknown.
Methods: We studied the associations of plasma Met and incident AMI in 4156 patients (77% men;
median age 62 years) with stable angina pectoris, among whom the majority received lipid lowering
therapy with statins. Risk associations were estimated using Cox-regression analyses.
Results: Plasma Met was negatively related to age, serum levels of total cholesterol, low-density lipo-
protein cholesterol (LDL-C) and apolipoprotein (apo) B at baseline (all p�0.05). During a median follow-
up of 7.5 years, 534 (12.8%) patients experienced an AMI. There was no overall association between
plasma Met and incident AMI; however, plasma Met was inversely associated with risk among patients
with high as compared to low levels of serum LDL-C or apo B 100 (multivariate adjusted HRs per SD [95%
CI] 0.84 [0.73e0.96] and 0.83[0.73e0.95], respectively; p-interaction �0.02). Trends towards an inverse
risk relationship were also observed among those younger than 62 years and patients without diabetes
or hypertension.
Conclusions: Low plasma Met was associated with increased risk of AMI in patients with high circulating
levels of atherogenic lipids, but also in subgroups with presumably lower cardiovascular risk. The de-
terminants of Met status and their relation with residual cardiovascular risk in patients with coronary
heart disease should be further investigated.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

Methionine (Met) is an essential sulfur-based amino acid
naturally present in the diet, or regenerated from homocysteine by
the enzymes Met synthase (MS) or betaine-homocysteine meth-
yltransferase (BHMT), using tetrahydrofolate (THF) and betaine as
the methyl donors, respectively (Fig. 1) [1]. Met is in turn metab-
olized to the global methyl donor S-adenosylmethionine by the
enzyme methionine adenosyltransferase [1]. Following the
cience, University of Bergen,
Hospital, Jonas Lies vei 87,
removal of the methyl group and catalyzed by glycine N-methyl-
transferase (GNMT), the product S-adenosylhomocysteine is hy-
drolyzed to homocysteine, a risk factor for coronary artery disease
(CAD) [2].

Met is involved in numerous metabolic processes, such as,
protein synthesis, polyamine metabolism, glutathione synthesis
and methylation reactions including DNA [1]. Animal studies also
suggest that Met availability regulates the flux through GNMT [3],
which has been shown to affect the composition of atherosclerotic
lesions, and the regulation of inflammatory responses [4] and he-
patic cholesterol metabolism [5]. Indeed, Met deficiency has been
directly associated with hepatic lipid accumulation through
blocking hepatic very-low-density lipoprotein (VLDL) secretion and
inhibiting mitochondrial fatty acid b-oxidation [6,7]. Notably,
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Fig. 1. Methionine metabolism.
MAT, methionine S-adenosyltransferase; SAM, S�adenosylmethionine; SAH, S-ade-
nosylhomocysteine; CBS, cystathionine beta-synthase; BHMT, betaine-homocysteine
methyltransferase; MS, methionine synthase; 5-MTHF, 5-methylenetetrahydrofolate;
THF, tetrahydrofolate; GSH, glutathione.
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hepatic lipid accumulation is consistently related to increased risk
of atherosclerosis in several studies [8e10]. Additionally, Met
deficiency can induce site-specific hypomethylation [11], which has
recently been linked to increased expression of proprotein con-
vertase subtilisin/kexin type 9 (PCSK9), a serine protease involved
in the degradation of both hepatic and extrahepatic LDL receptors
(LDL-Rs), thereby increasing circulating LDL cholesterol concen-
trations [12]. Moreover, Met deficiency increases the susceptibility
of lipoproteins to oxidation [13], which may further promote
oxidized low-density lipoprotein (oxLDL)-induced foam cell for-
mation and progression of atheromatous plaques [4,13].

Taken together, these observations suggest that the availability
of the sulfur amino acid, Met, can affect lipid metabolism and thus
may be related to the development of atherosclerotic CAD. How-
ever, few studies have evaluated the association between circu-
lating Met and cardiovascular disease (CVD), and findings have
been inconsistent [2,14,15]. One study found lower concentrations
of Met in cases than in controls [2], while another study did not
observe such an association [14]. On the other hand, lower Met
levels have been associated with increased risk of venous throm-
bosis [15], which in turn is related to atherosclerosis of the arteries
[16]. Nevertheless, the direct relationship between plasma Met and
acute myocardial infarction (AMI) is not known.

We investigated the relation of plasma Met with long-term risk
of incident AMI in a large prospective cohort of patients with sus-
pected stable angina pectoris (SAP), additionally exploring poten-
tial effect modifications by baseline risk factors for CAD.
2. Patients and methods

2.1. Study cohort 14, 15

A total of 4164 adult patients, undergoing elective coronary
angiography due to suspected SAP between 1999 and 2004 at
Haukeland (n¼ 3413) and Stavanger (n¼ 751) University Hospitals
in Western Norway were enrolled in this study. The study protocol
has been described in detail elsewhere [17]. Of these, 2573 (61.8%)
were included in the Western Norway B-vitamin Intervention Trial
(WENBIT, NCT00354081), to investigate the effect of vitamin B
treatment on all-cause mortality and cardiovascular outcomes [18].
Patients with missing plasma Met data at baseline were excluded
from the study, leaving a total of 4156 patients with SAP for the final
analyses. The study protocol was approved by the regional ethics
committee and the Norwegian Data Inspectorate, and was carried
out according to the Declaration of Helsinki. All participants pro-
vided informed consent.

2.2. Baseline data

Clinical information about patient's lifestyle, medical history,
CVD risk factors and medications were obtained from self-
administered questionnaires/through interviews; and was
checked against hospital records. Smoking status was based on self-
reported smoking habits and serum cotinine levels �85 nmol/L at
baseline [17]. Diabetes mellitus was defined as previously diag-
nosed, or having a baseline plasma fasting glucose concentration
>7mmol/l, non-fasting glucose concentration >11.1mmol/l or
HbA1c >6.5%, according to the American Diabetes Association
(ADA) guidelines [19]. Hypertension was defined according to pre-
existing diagnoses. The angiographic extent of CAD was scored as
nonsignificant stenosis or as single, double or triple vessel disease
(0e3) according to the number of coronary arteries with a signifi-
cant (>50%) narrowing of the lumen.

2.3. Follow-up and study end points

Patients were followed-up from enrollment until suffering from
an AMI or throughout 2009. Information on study outcomes was
obtained from the Western Norway Cardiovascular Registry,
reporting on all patients being discharged with a CVD diagnosis
from any 42 Norwegian public hospitals during 1994e2009 [20].
The primary endpoint was total AMI (fatal and nonfatal), which was
classified according to the 2000 revised definition of AMI criteria
[21].

2.4. Biochemical analyses

Details on the collection, storage and biochemical analysis of
plasma samples have been described previously [17]. Routine
biochemical analyses were performed at the local laboratories in
each recruiting hospital, whereas study-specific analyses were
carried out by Bevital AS, Bergen, Norway (http://www.bevital.no).
Plasma concentrations of Met and total homocysteine (tHcy) were
measured by gas chromatographyetandem mass spectrometry.
Serum apolipoprotein (apo) A1 and apo B 100 were analyzed using
Hitachi 917 and 912 systems, respectively, from Roche Diagnostics.

2.5. Statistical analysis

Baseline variables are reported as median (interquartile range
(IQR)) or counts (percentages) as appropriate. Patient baseline
characteristics across quartiles of plasma Met were compared, by
median linear or logistic regression for continuous and categorical
variables, respectively.

The association between plasma Met and risk of AMI was esti-
mated using Cox regression models. The hazard ratios (HRs) and
95% confidence intervals (CI) were reported according to quartiles
of plasma Met, and per 1 standard deviation (SD) increment in
log transformed plasma Met. The simple model included age
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(continuous), gender (male/female) and fasting status (yes/no), and
the multivariate model additionally included current smoking (yes/
no), hypertension (yes/no), diabetes mellitus (yes/no), physical
activity (�2 days/week), and estimated glomerular filtration rate
(eGFR), body mass index (BMI), and serum apo A1 and apo B (all
continuous). Further adjustments for statin treatment or C-reactive
protein (CRP) did not appreciably alter the risk estimates and were
excluded in the final model (data not shown).The assumption of
proportionality was tested by inspecting log-log plots and calcu-
lating scaled Schoenfeld residuals.

To investigate potential effect modifications, survival analyses
were performed according to subgroups of baseline serum lipid
parameters (including LDL cholesterol, apoB, high-density lipo-
protein-cholesterol and apoA1), and according to traditional risk
factors for coronary heart disease (CHD) such as age, gender, BMI,
diabetes, hypertension smoking and eGFR. Continuous variables
were dichotomized according to their median value, and in-
teractions were tested by adding interaction products terms to the
respective Cox models.

The computer software packages PASW Statistics 21 (SPSS IBM,
NY, USA) and R (R Development Core Team, version 3.2.1) were
used to perform statistical analyses. In all statistical models, p
values were two-sided and p< 0.05 was considered statistically
Table 1
Baseline characteristics according to the quartiles of plasma methionine.

na Total cohort Quartiles

Q1 (�23.

(n¼ 1054

Age, y 4156 62 (15) 63 (15)
Male sex, n (%) 4156 2334 (77) 658 (62.4
Fasting, n (%) 3982 1135 (28.5) 414 (40.7
BMI, kg/m2 4153 26 (4) 26 (5)
Physical activity, 2 times/week 3884 2155 (55.5) 461 (46.2
CHD risk factors, n%
Diabetes mellitus 4118 978 (32.5) 414 (39.8
Hypertension 4156 1442 (47.5) 511 (48.5
Current smoking 4128 978 (32.3) 343 (32.9

Cardiovascular history, n (%)
Prior MI 4156 1332 (44) 441 (41.8
Prior PAD 4156 288 (9.5) 89 (8.4)

Angiographic evidence of CAD, n (%) 4156
Nonsignificant stenosis 1044 234 (22.2
1-vessel disease 965 260 (24.7
2-vessel disease 926 234 (22.2
3-vessel disease 1221 326 (30.9

eGFR, mL/min per 1.73m2 4155 91 (21) 93 (21)
CRP, mg/L 4154 1.78 (2.80) 2.05 (3.70
Serum lipids,
Total cholesterol, mmol/L 4154 4.90 (1.40) 5.0 (1.42)
LDL cholesterol, mmol/L 4152 2.90 (1.30) 2.97 (1.39
ApoB, g/L 4155 0.87 (0.31) 0.88 (0.33
HDL cholesterol, mmol/L 4155 1.20(0.50) 1.29 (0.50
ApoA1, g/L 4154 1.30 (0.35) 1.27 (0.37

Plasma markers of B-vitamin status and homocysteine
Folate, nmol/L 4154 10.1(7.4) 9.71 (7.29
Cobalamin (B12), pmol/L 3664 362 (193) 347 (180
PLP, nmol/L 4132 41.3 (30.3) 35.2 (25.6
tHcy, mmol/L 4156 10.4 (3.90) 10.3 (4.08

Medications, n (%)
Statins 4156 3333 (80.2) 851 (80.7
Aspirin 4156 3393 (81.6) 886 (84.1
Metformin 4156 192 (4.6) 47 (4.5)
b-Blockers 4156 3013 (72.5) 764 (72.5
Diuretics 4156 714 (17.2) 212 (20.1
ACEI and ARB 4156 1326 (31.9) 345 (32.7

Continuous variables are presented as medians (interquartile range), and categorical var
BMI indicates body mass index; CAD, coronary artery disease; CHD, coronary heart disea
density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; MI, myocard
homocysteine.

a Patients with valid measurements.
significant.

3. Results

3.1. Baseline characteristics

Baseline characteristics of the study patients (n¼ 4156) ac-
cording to quartiles of plasma Met are presented in Table 1. The
overall median (IQR) age was 62 years, 77% were men, 32% were
current smokers, 48% were diagnosed with hypertension, 33% had
diabetes mellitus and 44% had a history of AMI. There was no as-
sociation between Met quartiles and several traditional CHD risk
factors, including previous CHD, hypertension, diabetes and
smoking, whereas a significant inverse relationship was observed
with eGFR and CRP. Moreover, plasma Met was positively associ-
ated with apoA1, but inversely with high-density lipoprotein
cholesterol (HDL-C), total cholesterol and LDL-C. A trend towards
an inverse relationship was also seen with apo B. Notably, the lipid
associations were also present after adjusting for statin treatment
(p< 0.001). PlasmaMet was not related to plasma tHcy but showed
a strong positive association with plasma pyridoxal 50-phosphate
(PLP). Furthermore, patients with higher Met less likely used
aspirin and diuretics, but more frequently took metformin.
of plasma methionine ptrend

5) Q2 (23.5e27.6) Q3 (27.6e33.3) Q4 (>33.3)

) (n¼ 1025) (n¼ 1044) (n¼ 1033)

62 (14) 62 (15) 61 (16) 0.009
) 739 (72.1) 786 (75.3) 807 (78.1) <0.001
) 358 (36.7) 282 (28.3) 81 (8.1) <0.001

26 (4) 26 (5) 26 (5) 0.16
) 520 (54) 568 (58.9) 606 (63.2) <0.001

) 389 (38.4) 374 (36.0) 388 (37.7) 0.19
) 465 (45.4) 471 (45.1) 496 (48.0) 0.79
) 317 (31.2) 335 (32.2) 319 (31.0) 0.46

) 412 (40.2) 413 (39.6) 412 (39.9) 0.34
96 (9.4) 98 (9.4) 94 (9.1) 0.61

0.05
) 258 (25.2) 268 (25.7) 284 (27.5)
) 233 (22.7) 234 (22.4) 238 (23.0)
) 247 (24.1) 239 (22.9) 206 (19.9)
) 287(28.0) 303 (29.0) 305 (29.5)

91 (21) 90 (20) 89 (22) <0.001
) 1.77 (2.66) 1.70 (2.55) 1.65 (2.43) <0.001

4.90 (1.48) 4.88 (1.50) 4.80 (1.40) <0.001
) 2.90 (1.30) 3.0 (1.30) 2.90 (1.30) 0.01
) 0.87 (0.31) 0.87 (0.31) 0.85 (0.30) 0.05
) 1.20 (0.50) 1.20 (0.45) 1.20 (0.50) 0.04
) 1.30 (0.35) 1.29 (0.32) 1.31 (0.35) 0.001

) 10.1 (7.49) 10.1 (7.53) 10.6 (7.48) 0.25
) 357 (188) 368 (198) 377 (206) 0.28
) 40.9 (31.1) 42.9 (30.6) 47.2 (31.3) <0.001
) 10.5 (4.01) 10.4 (3.76) 10.5 (3.74) 0.64

) 834 (81.4) 832 (79.7) 816 (79.0) 0.21
) 844 (82.3) 837 (80.2) 826 (80.0) 0.007

46 (4.5) 37 (3.5) 62 (6.0) 0.065
) 741 (72.3) 770 (73.8) 738 (71.4) 0.79
) 172 (16.8) 163 (15.6) 167 (16.2) 0.012
) 329 (32.1) 328 (31.4) 324 (31.7) 0.45

iables are reported as counts (%).
se; CRP, C-reactive protein; eGFR, estimated glomerular filtration rate; HDL-C, high-
ial infarction; PAD, peripheral artery disease; PLP, pyridoxal phosphate; tHcy, total
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3.2. Plasma Met and incident AMI

A total of 534 (12.8%) patients experienced an AMI during the
median (IQR) follow-up of 7.5 (2.4) years. Risk association between
plasma Met and AMI are presented in Supplemental Table 1 and
illustrated in Supplemental Fig. 1. There were no significant overall
associations between plasma Met and subsequent AMI. The
multivariate adjustments did not appreciably affect the risk esti-
mates (Supplemental Table 1).

3.3. Subgroup analyses

Fig. 2 depicts age, gender and fasting status adjusted risk esti-
mates between plasma Met and future AMI according to several
established risk factors for coronary artery disease. Among patients
with high (above median) versus low serum LDL-C or apoB levels,
plasma Met showed an inverse association with incident AMI (HR
per SD [95% CI] was 0.85 [0.74e0.97; p¼ 0.02] and 0.84 [0.74e0.96;
p ¼ 0.01], respectively; p for interaction� 0.02). The risk estimates
did not appreciably change after multivariate adjustment (Fig. 3).
The Met-AMI association was not modified by serum HDL-C or
ApoA1 (p for interaction >0.15).

We also observed an inverse association between plasma Met
and incident AMI in patients aged 65 years or below (younger), and
those without diabetes or hypertension, whereas there was no
association among those aged above 65 years (elderly), and in pa-
tients with diabetes or hypertension (Figs. 2 and 3) (p for interac-
tion¼ 0.07, 0.04 and 0.06, respectively in age, gender and fasting
Fig. 2. Risk association between plasma methionine and incident AMI according to subgro
The black squares represent sample size and horizontal lines represent the 95% CI. AMI indic
body mass index; eGFR, estimated glomerular filtration rate; HDL-C, high-density lipopro
Adjusted for age, gender, and fasting status.
status adjusted model).
Approximately 2/3 of these patients enrolled in the WENBIT

received treatment with either folic acid and/or vitamin B6
throughout 2006. We did not find any effect modification by any of
the intervention treatments on the risk estimates of plasma Met
(Supplemental Table 2).

4. Discussion

4.1. Principal findings

In this large prospective cohort study among 4156 patients
undergoing elective coronary angiography for suspected SAP, we
observed no overall association between plasma Met and incident
AMI followed for an average of >7 years, mirroring the lack of any
overall relationship between plasma Met and previous CVD also at
baseline. However, we found that plasma concentration of Met was
inversely associated with risk among patients with high LDL-
cholesterol or apoB levels, as well as among younger patients and
those without pre-exiting diabetes or hypertension.

4.2. Strengths and limitations

The major strengths of this study include the large sample size,
detailed clinical characterization of the population and its-long
term prospective design. Although the possibility of residual con-
founding cannot be ruled out in observational cohort studies, the
adjustment for established CHD risk factors minimizes the risk of
ups of established risk factors for coronary artery disease.
ates acute myocardial infarction; ApoA, apolipoprotein A; ApoB, apolipoprotein B; BMI,
tein cholesterol; LDL-C, low-density lipoprotein cholesterol; SD, standard deviation.



Fig. 3. Forest plot illustrating association between plasma methionine per SD (log
transformed) and incident AMI according to traditional risk factors.
The black squares represent sample size and horizontal lines represent the 95% CI. AMI
indicates acute myocardial infarction; ApoA, apolipoprotein A; ApoB, apolipoprotein B;
BMI, body mass index; eGFR, estimated glomerular filtration rate; HDL-C, high-density
lipoprotein cholesterol; HR, hazard ratio; LDL-C, low-density lipoprotein cholesterol;
SD, standard deviation. Adjusted for age, gender, fasting status, BMI, diabetes, hyper-
tension, smoking, physical activity, eGFR, serum apolipoprotein A1 and apoB.
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residual confounding as an explanation for the observed
associations.

There are some additional aspects, whichmerit consideration.1)
The average follow-up period was quite long (7.5 years), which may
have weakened any true associations [22]. 2) Another potential
weakness includes the single measurement of Met concentrations
at baseline with no data on possible longitudinal variability.
Moreover, a prior study from a subsample of the current cohort
demonstrated poor within-subject reproducibility for plasma Met
(intraclass correlation coefficient: 0.30 [95% CI: 0.26e0.35]) [23],
which may have underestimated the true associations, due to
regression dilution effect. 3) Serum Met is very oxidation-sensitive
and may have degraded over time in the freezers before analysis
[24]. However, in the current study, all blood specimen have been
stored at a stable �80 �C, with little or no signs of deteriorations
during storage. 4) Finally, the majority of blood samples were
drawn from non-fasting subjects, which may pose a challenge
because of the influence of fasting status on plasma Met concen-
trations [25]. However, in the current study, adjustment for fasting
status did not alter total associations or the interaction effects.

4.3. Met and CVD in other epidemiological studies

Data on the relationship between Met and CVD are limited. A
case-control study among 185 patients with recurrent venous
thrombosis and 500 healthy subjects showed a positive relation-
ship between low Met concentration and venous thrombosis risk
[15]. Another study reported low Met levels in plasma in patients
with CVD [2], but others showed no such association [14]. However,
as far as we are aware, the present study is the first large-scale
analysis of the long-term prospective relation on plasma Met and
clinical cardiovascular outcomes among patients with suspected
SAP.

4.4. Met, lipid parameters and AMI risk

ApoB is the vital component of the LDL particle and high ApoB is
a well-documented risk factor for atherosclerotic CVD [26]. In the
current study, we observed an association between low Met and
incident AMI among patients with high LDL-C or apoB levels, sug-
gesting that Met availability may affect lipid metabolism. These
effects may involve GNMT, since a Met-deficient condition may
lead to reduced flux through GNMT [27]. Notably, reduced GNMT
flux has been shown to attenuate hepatic lipid uptake, and induce
hyperlipidemia [5], in addition to increasing lipid accumulation in
macrophages and upregulating inflammatory responses [4], which
may promote formation of oxLDL-induced foam cell inside the ar-
tery wall [4,13]. Because Met is crucial for methylation reactions
[11], it is interesting that a link has been suggested between
hypomethylation and increased PCSK9 expression, which can
further increase levels of circulating LDL-C via intracellular degra-
dation of LDLR [12]. Thus, future studies should investigatewhether
Met is primarily exerting its effects by mechanisms regulating
GNMT flux or via epigenetic modification of PCSK9 expression.

4.5. Plasma status of Met

Low plasma Met concentrations may be due to inadequate
intake of proteins or nutritional insufficiency [1,2,15,25].We did not
evaluate protein intake in the current study. Although, we found no
significant interaction between B-vitamin treatment and Met on
AMI occurrence, we cannot exclude an influence of this treatment
on the observed results. It is however, unlikely that a lowMet status
in the current study reflects suboptimal nutritional status or
vitamin-dependent impaired homocysteine remethylation. Alter-
natively, low plasma Met concentrations may relate to low BHMT
activity [1]. Interestingly, low BHMT activity has been shown to
impair the transcription of peroxisome proliferator-activated re-
ceptor (PPAR) a [28], a nuclear factor involved in lipid-lowering as
well as downregulation of GNMT and the enzymes of the trans-
sulfuration pathway [29]. Thus, lowMet could also be consequence
of increased downstream catabolism due to low endogenous PPARa
activity. Accordingly, we observed an inverse association between
Met and serum LDL-cholesterol, and apoB levels and also CRP at
baseline. Nevertheless, Met metabolism is complex and previous
studies have shown that a Met-deficient state increases flux
through BHMT [30] and inhibits transsulfuration flux via feedback
mechanisms [1]. Thus, it remains an open question whether low
systemic Met is secondary to impaired BHMT, increased down-
stream catabolism or a combination of both.

4.6. Plasma Met, age and incident AMI

Our subgroup analysis also suggests that the inverse risk asso-
ciation between plasma Met and AMI was found exclusively in the
younger age group. The mechanisms behind this effect modifica-
tion are unclear, but there are some plausible interpretations. First,
this may be due to differences in baseline risk, as baseline risk
determines the magnitude of the association as well as relative
effect [31]. Another possibility is the one of selection bias, whereby
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older patients in the current population may comprise a selected
group who are less prone to develop CVD. Nevertheless, further
studies are required to explicate the age-related differences in the
association between circulating Met and CHD incidence.
4.7. Plasma Met in relation to diabetes and hypertension

We found significant inverse risk associations between plasma
Met and incident AMI in patients without diabetes or hypertension.
The lack of association between plasma Met and incident AMI in
diabetes or hypertensive subjects might be due to use of medica-
tions. However, the effects of treatment therapies are complex due
to their potential impact on Met metabolism. In fact, metformin
treatment in diabetic patients causes vitamin B-12 malabsorption
[32], which may in turn alter Met status. On the other hand, anti-
hypertensive therapy increases the bioavailability of nitric oxide
[33,34], which can modulate Met status directly by inactivating MS
[35]. Therefore, further investigations are certainly needed to
explore the role of circulating Met in high-risk cardiovascular
subsets, with a particular focus on diabetes and hypertension.
4.8. Conclusions

In conclusion, the results of our large, prospective cohort of
patients with SAP do not support an overall independent associa-
tion of Met with incident AMI. However, low levels of plasma Met
are associated with increased risk of AMI among participants
having high circulating LDL-cholesterol or apoB levels, as well as
among subjects who are young and thosewithout diabetes mellitus
or hypertension (low-risk for CVD). Future studies are warranted to
explore these interrelationships further and to evaluate their po-
tential clinical implications. Such research should also consider the
potential interaction with the use of lipid-lowering therapy on
clinical outcomes.
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